People
About me
I am an Associate Professor of Computer Science within the SySMA research unit of IMT Lucca.
Currently, I am Research Associate to HPC Lab at ISTI, CNR, Pisa
I worked as a research scientist at IBM Research, Ireland, Dublin; then, I held senior data scientist positions at Tiscali , Cloud4Wi, and Vodafone. I received my PhD in Information Engineering from the University of Pisa in 2010, where I worked at KDD Lab, CNR, Pisa. During my PhD, I was a visiting researcher at Senseable City Lab at M.I.T., Cambridge, MA, US.
News
Research Activities
My research interests are Data Mining and Machine Learning and their application in different domains. In my early scientific career, I have mainly focused on the development of Data Mining frameworks for spatiotemporal data to be applied to Urban Dynamics and Intelligent Transportation systems. In the most recent years, I have worked on machine learning pipelines for business and marketing problems.
Currently, I am working on:
Deep learning methods on mobile phone sensor data (e.g., GPS trajectories, Human Activity, etc. )
Security on Federated Learning Frameworks
Trustworthiness of news
Applied machine learning (e.g., economics, blockchain, etc.)
Recent Publications
L.Mazzoni, F. Pinelli, M. Riccaboni. Measuring corporate digital divide through websites: insights from Italian firms. EPJ Data Sci. 2024
C. Pugliese, F. Lettich, F. Pinelli, C. Renso. Understanding Human Mobility Dynamics: Insights from Summarized Semantic Trajectories, 25th IEEE International Conference on Mobile Data Management (MDM), 2024 (short paper)
L. Galletta, F. Pinelli. Explainable Ponzi Schemes Detection on Ethereum, 39th ACM/SIGAPP Symposium on Applied Computing
J. Bianchi, M. Pratelli, M. Petrocchi, F. Pinelli. Evaluating Trustworthiness of Online News Publishers via Article Classification, 39th ACM/SIGAPP Symposium on Applied Computing
C. Pugliese, F. Lettich, F. Pinelli, C. Renso. Summarizing Trajectories Using Semantically Enriched Geographical Context. SIGSPATIAL 2023
F. Lettich, C. Pugliese, C. Renso, F. Pinelli. Semantic Enrichment of Mobility Data: A Comprehensive Methodology and the MAT-BUILDER System IEEE Access, 2023
F. Lettich, C. Pugliese, C. Renso, F. Pinelli. A general methodology for building multiple aspect trajectories Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, 515-517
G. Costa, F. Pinelli, S. Soderi, G. Tolomei. Turning Federated Learning Systems Into Covert Channels IEEE Access 10, 130642-130656
C. Pugliese, F. Lettich, C. Renso, F. Pinelli. Mat-builder: a system to build semantically enriched trajectories 2022 23rd IEEE International Conference on Mobile Data Management (MDM), 274-277, 2, 2022
Selected Publications
C. Pugliese, F. Lettich, F. Pinelli, C. Renso. Summarizing Trajectories Using Semantically Enriched Geographical Context. SIGSPATIAL 2023
F. Pinelli, R. Nair, F. Calabrese, G. Di Lorenzo, M. L. Sbodio, and M. Berlingerio. Data-driven transit network design from mobile phone trajectories. IEEE Transactions on Intelligent Transportation Systems, 2016.
G. Di Lorenzo, M., F. Calabrese, M. Berlingerio, F. Pinelli, and R. Nair. Allaboard: Visual exploration of cellphone mobility data to optimise public transport. IEEE Transactions on Visualization and Computer Graphics, 2016.
Y. Dong, F. Pinelli, Y. Gkoufas, Z. Nabi, F. Calabrese, and N. V. Chawla. Inferring unusual crowd events from mobile phone call detail records. ECML/PKDD, 2015.
F. Pinelli, F. Calabrese, and E. Bouillet. A methodology for denoising and generating bus infrastructure data, IEEE Transactions on Intelligent Transportation Systems, 2014.
M. Berlingerio, F. Pinelli, F. Calabrese. Abacus: frequent pattern mining-based community discovery in multidimensional networks. Data Mining and Knowledge Discovery, 2013.
F. Giannotti, M. Nanni, D. Pedreschi, F. Pinelli, C. Renso, S. Rinzivillo, R. Trasarti. Unveiling the complexity of human mobility by querying and mining massive trajectory data. The VLDB Journal, 2011.
R. Trasarti, F. Pinelli, M. Nanni, and F. Giannotti. Mining mobility user profiles for car pooling. ACM SIGKDD, 2011.
A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti. Wherenext: a location predictor on trajectory pattern mining. ACM SIGKDD, 2009.
M. Berlingerio, F. Pinelli, M. Nanni, and F. Giannotti. Temporal mining for interactive workflow data analysis. ACM SIGKDD, 2009.
F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi. Trajectory pattern mining. ACM SIGKDD, 2007.
See my Google Scholar profile or my DBLP page for a full list of publications.
Patents
F. Calabrese and F. Pinelli. Public transportation fare evasion inference using personal mobility data, 2014.
A. Botea, M. Berlingerio, E. Bouillet, F. Calabrese, and F. Pinelli. System for inferring inconvenient traveller experience in journeys, 2013.
R. Nair, F. Pinelli, and F. Calabrese. Real-time system to predict and correct scheduled service bunching, 2013.
E. Bouillet, F. Calabrese, F. Pinelli, M. Sinn, and J. Yoon. Estimation of arrival times at transit stops, 2012.
E. Bouillet, F. Calabrese, F. Pinelli, and O. Verscheure. De-noising scheduled transportation data, 2012.