
Outline Introduction A Self-Adaptive System Conclusion

Parallel Monitors for Self-Adaptive Sessions

joint work with Mariangiola Dezani and Betti Venneri

CINA, Civitanova Marche, 20 March 2016

1/23

Outline Introduction A Self-Adaptive System Conclusion

1 Introduction

2 A Self-Adaptive System

3 Conclusion

2/23

Outline Introduction A Self-Adaptive System Conclusion

Adaptation

What is adaptation?

R. Bruni, A. Corradini, F. Gadducci, A. Lluch-Lafuente, and
A. Vandin, “A Conceptual Framework for Adaptation,” in

FASE’12, ser. LNCS, vol. 7212. Springer, 2012, pp. 240–254.

“we define adaptation as the run-time modification of the control
data ...and a component is self-adaptive if it is able to modify its

own control data at run-time”

we need to distinguish between standard data and control data: a
change in the system behaviour is part of the application logic if it

is based on standard data, it is an adaptation if it is based on
control data.

3/23

Outline Introduction A Self-Adaptive System Conclusion

Adaptation

What is adaptation?

R. Bruni, A. Corradini, F. Gadducci, A. Lluch-Lafuente, and
A. Vandin, “A Conceptual Framework for Adaptation,” in

FASE’12, ser. LNCS, vol. 7212. Springer, 2012, pp. 240–254.

“we define adaptation as the run-time modification of the control
data ...and a component is self-adaptive if it is able to modify its

own control data at run-time”

we need to distinguish between standard data and control data: a
change in the system behaviour is part of the application logic if it

is based on standard data, it is an adaptation if it is based on
control data.

3/23

Outline Introduction A Self-Adaptive System Conclusion

Adaptation

What is adaptation?

R. Bruni, A. Corradini, F. Gadducci, A. Lluch-Lafuente, and
A. Vandin, “A Conceptual Framework for Adaptation,” in

FASE’12, ser. LNCS, vol. 7212. Springer, 2012, pp. 240–254.

“we define adaptation as the run-time modification of the control
data ...and a component is self-adaptive if it is able to modify its

own control data at run-time”

we need to distinguish between standard data and control data: a
change in the system behaviour is part of the application logic if it

is based on standard data, it is an adaptation if it is based on
control data.

3/23

Outline Introduction A Self-Adaptive System Conclusion

Adaptation

What is adaptation?

R. Bruni, A. Corradini, F. Gadducci, A. Lluch-Lafuente, and
A. Vandin, “A Conceptual Framework for Adaptation,” in

FASE’12, ser. LNCS, vol. 7212. Springer, 2012, pp. 240–254.

“we define adaptation as the run-time modification of the control
data ...and a component is self-adaptive if it is able to modify its

own control data at run-time”

we need to distinguish between standard data and control data: a
change in the system behaviour is part of the application logic if it

is based on standard data, it is an adaptation if it is based on
control data.

3/23

Outline Introduction A Self-Adaptive System Conclusion

Introductory Example

Let’s consider a company in which factories interact with the
general manager about production policies. Moreover, the
sellers can communicate each other for requiring some
products.

The company initially consists of:

a general manager GM :

an Italian factory iF :

an American factory aF :

an Italian seller iS :

an American Seller aS :

4/23

Outline Introduction A Self-Adaptive System Conclusion

Introductory Example

Let’s consider a company in which factories interact with the
general manager about production policies. Moreover, the
sellers can communicate each other for requiring some
products.

The company initially consists of:

a general manager GM :

an Italian factory iF :

an American factory aF :

an Italian seller iS :

an American Seller aS :

4/23

Outline Introduction A Self-Adaptive System Conclusion

Introductory Example

Let’s consider a company in which factories interact with the
general manager about production policies. Moreover, the
sellers can communicate each other for requiring some
products.

The company initially consists of:

a general manager GM :

an Italian factory iF :

an American factory aF :

an Italian seller iS :

an American Seller aS :

4/23

Outline Introduction A Self-Adaptive System Conclusion

Introductory Example

Let’s consider a company in which factories interact with the
general manager about production policies. Moreover, the
sellers can communicate each other for requiring some
products.

The company initially consists of:

a general manager GM :

an Italian factory iF :

an American factory aF :

an Italian seller iS :

an American Seller aS :

4/23

Outline Introduction A Self-Adaptive System Conclusion

Introductory Example

Let’s consider a company in which factories interact with the
general manager about production policies. Moreover, the
sellers can communicate each other for requiring some
products.

The company initially consists of:

a general manager GM :

an Italian factory iF :

an American factory aF :

an Italian seller iS :

an American Seller aS :

4/23

Outline Introduction A Self-Adaptive System Conclusion

Introductory Example

Let’s consider a company in which factories interact with the
general manager about production policies. Moreover, the
sellers can communicate each other for requiring some
products.

The company initially consists of:

a general manager GM :

an Italian factory iF :

an American factory aF :

an Italian seller iS :

an American Seller aS :

4/23

Outline Introduction A Self-Adaptive System Conclusion

Introductory Example

Let’s consider a company in which factories interact with the
general manager about production policies. Moreover, the
sellers can communicate each other for requiring some
products.

The company initially consists of:

a general manager GM :

an Italian factory iF :

an American factory aF :

an Italian seller iS :

an American Seller aS :

4/23

Outline Introduction A Self-Adaptive System Conclusion

System overview

a system represent a conversation between a number of
distributed participants that can access a global state;

the overall structure of the system is given by a (parallel
composition of) global types;

Single participants are formed by an association of a monitor
and a process ;

monitors are obtained as projection of the Global Types and
give the structure of the communications between
participants;

processes represent the executable code of each participant
and can test or modify the global state;

monitors control processes allowing only the action compatible
with the actual communication structure;

processes allow the use of an external choice operator and can
be compatible with different monitors.

5/23

Outline Introduction A Self-Adaptive System Conclusion

System overview

a system represent a conversation between a number of
distributed participants that can access a global state;

the overall structure of the system is given by a (parallel
composition of) global types;

Single participants are formed by an association of a monitor
and a process ;

monitors are obtained as projection of the Global Types and
give the structure of the communications between
participants;

processes represent the executable code of each participant
and can test or modify the global state;

monitors control processes allowing only the action compatible
with the actual communication structure;

processes allow the use of an external choice operator and can
be compatible with different monitors.

5/23

Outline Introduction A Self-Adaptive System Conclusion

System overview

a system represent a conversation between a number of
distributed participants that can access a global state;

the overall structure of the system is given by a (parallel
composition of) global types;

Single participants are formed by an association of a monitor
and a process

;

monitors are obtained as projection of the Global Types and
give the structure of the communications between
participants;

processes represent the executable code of each participant
and can test or modify the global state;

monitors control processes allowing only the action compatible
with the actual communication structure;

processes allow the use of an external choice operator and can
be compatible with different monitors.

5/23

Outline Introduction A Self-Adaptive System Conclusion

System overview

a system represent a conversation between a number of
distributed participants that can access a global state;

the overall structure of the system is given by a (parallel
composition of) global types;

Single participants are formed by an association of a monitor
and a process ;

monitors are obtained as projection of the Global Types and
give the structure of the communications between
participants;

processes represent the executable code of each participant
and can test or modify the global state;

monitors control processes allowing only the action compatible
with the actual communication structure;

processes allow the use of an external choice operator and can
be compatible with different monitors.

5/23

Outline Introduction A Self-Adaptive System Conclusion

System overview

a system represent a conversation between a number of
distributed participants that can access a global state;

the overall structure of the system is given by a (parallel
composition of) global types;

Single participants are formed by an association of a monitor
and a process ;

monitors are obtained as projection of the Global Types and
give the structure of the communications between
participants;

processes represent the executable code of each participant
and can test or modify the global state;

monitors control processes allowing only the action compatible
with the actual communication structure;

processes allow the use of an external choice operator and can
be compatible with different monitors.

5/23

Outline Introduction A Self-Adaptive System Conclusion

System overview

a system represent a conversation between a number of
distributed participants that can access a global state;

the overall structure of the system is given by a (parallel
composition of) global types;

Single participants are formed by an association of a monitor
and a process ;

monitors are obtained as projection of the Global Types and
give the structure of the communications between
participants;

processes represent the executable code of each participant
and can test or modify the global state;

monitors control processes allowing only the action compatible
with the actual communication structure;

processes allow the use of an external choice operator and can
be compatible with different monitors.

5/23

Outline Introduction A Self-Adaptive System Conclusion

System overview

a system represent a conversation between a number of
distributed participants that can access a global state;

the overall structure of the system is given by a (parallel
composition of) global types;

Single participants are formed by an association of a monitor
and a process ;

monitors are obtained as projection of the Global Types and
give the structure of the communications between
participants;

processes represent the executable code of each participant
and can test or modify the global state;

monitors control processes allowing only the action compatible
with the actual communication structure;

processes allow the use of an external choice operator and can
be compatible with different monitors.

5/23

Outline Introduction A Self-Adaptive System Conclusion

Global types

Global Type: G = G1 | G2 | G3

G1 = µt.GM→ iF : gif (ProductionLines).GM→ aF : gaf (ProductionLines).
iF→ GM : ifg(ProgressReport).aF→ GM : afg(ProgressReport).t

G2 = µt.iS→ iF : sf (Item,Amount).iF→ iS : {yes(DeliveryDate).t,
no(ExpectedTime)t}

G3 = µt.aS→ aF : sf (Item,Amount).aF→ aS : {yes(DeliveryDate).t,
no(ExpectedTime)t}

6/23

Outline Introduction A Self-Adaptive System Conclusion

Global types

Global Type: G = G1 | G2 | G3

G1 = µt.GM→ iF : gif (ProductionLines).GM→ aF : gaf (ProductionLines).
iF→ GM : ifg(ProgressReport).aF→ GM : afg(ProgressReport).t

G2 = µt.iS→ iF : sf (Item,Amount).iF→ iS : {yes(DeliveryDate).t,
no(ExpectedTime)t}

G3 = µt.aS→ aF : sf (Item,Amount).aF→ aS : {yes(DeliveryDate).t,
no(ExpectedTime)t}

6/23

Outline Introduction A Self-Adaptive System Conclusion

Global types

Global Type: G = G1 | G2 | G3

G1 = µt.GM→ iF : gif (ProductionLines).GM→ aF : gaf (ProductionLines).
iF→ GM : ifg(ProgressReport).aF→ GM : afg(ProgressReport).t

G2 = µt.iS→ iF : sf (Item,Amount).iF→ iS : {yes(DeliveryDate).t,
no(ExpectedTime)t}

G3 = µt.aS→ aF : sf (Item,Amount).aF→ aS : {yes(DeliveryDate).t,
no(ExpectedTime)t}

6/23

Outline Introduction A Self-Adaptive System Conclusion

Global types

Global Type: G = G1 | G2 | G3

G1 = µt.GM→ iF : gif (ProductionLines).GM→ aF : gaf (ProductionLines).
iF→ GM : ifg(ProgressReport).aF→ GM : afg(ProgressReport).t

G2 = µt.iS→ iF : sf (Item,Amount).iF→ iS : {yes(DeliveryDate).t,
no(ExpectedTime)t}

G3 = µt.aS→ aF : sf (Item,Amount).aF→ aS : {yes(DeliveryDate).t,
no(ExpectedTime)t}

6/23

Outline Introduction A Self-Adaptive System Conclusion

Global types

Global Type: G = G1 | G2 | G3

G1 = µt.GM→ iF : gif (ProductionLines).GM→ aF : gaf (ProductionLines).
iF→ GM : ifg(ProgressReport).aF→ GM : afg(ProgressReport).t

G2 = µt.iS→ iF : sf (Item,Amount).iF→ iS : {yes(DeliveryDate).t,
no(ExpectedTime)t}

G3 = µt.aS→ aF : sf (Item,Amount).aF→ aS : {yes(DeliveryDate).t,
no(ExpectedTime)t}

6/23

Outline Introduction A Self-Adaptive System Conclusion

Monitors

Monitors are obtained as projection of global types

µt.iF!sf (Item, Amount).iF?{yes(DeliveryDate).t,
no(Delay).t} from G2

µt.iS?sf (Item, Amount).iS!{yes(DeliveryDate).t,
no(Delay).t} |

µt.GM?gif (ProductionLines).GM!(ProgressReport).t from G1,G2

µt.iF!gif (ProductionLines).aF!gaf (ProductionLines).
iF?ifg(ProgressReport).aF?afg(ProgressReport).t from G1

......

......

7/23

Outline Introduction A Self-Adaptive System Conclusion

Monitors

Monitors are obtained as projection of global types

µt.iF!sf (Item, Amount).iF?{yes(DeliveryDate).t,
no(Delay).t} from G2

µt.iS?sf (Item, Amount).iS!{yes(DeliveryDate).t,
no(Delay).t} |

µt.GM?gif (ProductionLines).GM!(ProgressReport).t from G1,G2

µt.iF!gif (ProductionLines).aF!gaf (ProductionLines).
iF?ifg(ProgressReport).aF?afg(ProgressReport).t from G1

......

......

7/23

Outline Introduction A Self-Adaptive System Conclusion

Monitors

Monitors are obtained as projection of global types

µt.iF!sf (Item, Amount).iF?{yes(DeliveryDate).t,
no(Delay).t} from G2

µt.iS?sf (Item, Amount).iS!{yes(DeliveryDate).t,
no(Delay).t} |

µt.GM?gif (ProductionLines).GM!(ProgressReport).t from G1,G2

µt.iF!gif (ProductionLines).aF!gaf (ProductionLines).
iF?ifg(ProgressReport).aF?afg(ProgressReport).t from G1

......

......

7/23

Outline Introduction A Self-Adaptive System Conclusion

Monitors

Monitors are obtained as projection of global types

µt.iF!sf (Item, Amount).iF?{yes(DeliveryDate).t,
no(Delay).t} from G2

µt.iS?sf (Item, Amount).iS!{yes(DeliveryDate).t,
no(Delay).t} |

µt.GM?gif (ProductionLines).GM!(ProgressReport).t from G1,G2

µt.iF!gif (ProductionLines).aF!gaf (ProductionLines).
iF?ifg(ProgressReport).aF?afg(ProgressReport).t from G1

......

......

7/23

Outline Introduction A Self-Adaptive System Conclusion

Processes

Processes represent the runtime code implementing participants

µX .y !sf (item, amount).(y?yes(date).X + y?no(delay)).X

µX .y?sf (item, amount).if available(item) then y !yes(date).X
else y !no(delay).X |

µX .y?gif (productionlines).y !(progressreport).X

µX .y !gif (productionlines).y !ifg(productionlines).
y?ifg(progressreport).y?afg(progressreport).X

......

......

8/23

Outline Introduction A Self-Adaptive System Conclusion

Monitored processes

Participants are represented by monitored processes, which are
processes controlled by monitors.

µt.iF!sf (Item, Amount).iF?{fs(DeliveryDate).t, no(Delay).t}
[µX .y !sf (item, amount).(y?yes(date).X + y?no(delay)).X]

µt.iS?sf (Item, Amount).iS!{yes(DeliveryDate).t, no(Delay).t} |
µt.GM?gif (ProductionLines).GM!(ProgressReport).t

[µX .y?sf (item, amount).if available(item) then y !yes(date).X
else y !no(delay).X |

[µX .y?gif (productionlines).y !ifg(progressreport).X]

.......................................

9/23

Outline Introduction A Self-Adaptive System Conclusion

Monitored processes

Participants are represented by monitored processes, which are
processes controlled by monitors.

µt.iF!sf (Item, Amount).iF?{fs(DeliveryDate).t, no(Delay).t}
[µX .y !sf (item, amount).(y?yes(date).X + y?no(delay)).X]

µt.iS?sf (Item, Amount).iS!{yes(DeliveryDate).t, no(Delay).t} |
µt.GM?gif (ProductionLines).GM!(ProgressReport).t

[µX .y?sf (item, amount).if available(item) then y !yes(date).X
else y !no(delay).X |

[µX .y?gif (productionlines).y !ifg(progressreport).X]

.......................................

9/23

Outline Introduction A Self-Adaptive System Conclusion

System

A System is a parallel composition of monitored processes and a
global state:

|| || G σ

Operational semantics:

operational semantics is defined via a LTS with a special rule
for adaptation;

standard reduction steps of the system are allowed until an
adaptation function (defined on the global state) trigger the
adaptation step;

the parameter of the adaptation step are:

a set of participants to be removed;
a global type describing the adapted part of the system.

10/23

Outline Introduction A Self-Adaptive System Conclusion

System

A System is a parallel composition of monitored processes and a
global state:

|| || G σ

Operational semantics:

operational semantics is defined via a LTS with a special rule
for adaptation;

standard reduction steps of the system are allowed until an
adaptation function (defined on the global state) trigger the
adaptation step;

the parameter of the adaptation step are:

a set of participants to be removed;
a global type describing the adapted part of the system.

10/23

Outline Introduction A Self-Adaptive System Conclusion

System

A System is a parallel composition of monitored processes and a
global state:

|| || G σ

Operational semantics:

operational semantics is defined via a LTS with a special rule
for adaptation;

standard reduction steps of the system are allowed until an
adaptation function (defined on the global state) trigger the
adaptation step;

the parameter of the adaptation step are:

a set of participants to be removed;
a global type describing the adapted part of the system.

10/23

Outline Introduction A Self-Adaptive System Conclusion

System

A System is a parallel composition of monitored processes and a
global state:

|| || G σ

Operational semantics:

operational semantics is defined via a LTS with a special rule
for adaptation;

standard reduction steps of the system are allowed until an
adaptation function (defined on the global state) trigger the
adaptation step;

the parameter of the adaptation step are:

a set of participants to be removed;

a global type describing the adapted part of the system.

10/23

Outline Introduction A Self-Adaptive System Conclusion

System

A System is a parallel composition of monitored processes and a
global state:

|| || G σ

Operational semantics:

operational semantics is defined via a LTS with a special rule
for adaptation;

standard reduction steps of the system are allowed until an
adaptation function (defined on the global state) trigger the
adaptation step;

the parameter of the adaptation step are:

a set of participants to be removed;
a global type describing the adapted part of the system.

10/23

Outline Introduction A Self-Adaptive System Conclusion

System

A System is a parallel composition of monitored processes and a
global state:

|| || G σ

Operational semantics:

operational semantics is defined via a LTS with a special rule
for adaptation;

standard reduction steps of the system are allowed until an
adaptation function (defined on the global state) trigger the
adaptation step;

the parameter of the adaptation step are:

a set of participants to be removed;
a global type describing the adapted part of the system.

10/23

Outline Introduction A Self-Adaptive System Conclusion

Adaptation

Assume now that an accident (for instance a fire) seriously damage
the American factory. The business must go on and the Italian
factory must provide goods to the American seller too. The system
is adapted in the following way:

the American factory is (temporarily) excluded from the
business;

consequently the general manager discusses production
strategies only with the Italian factory;

in the meantime the general manager interacts with the
technical staff to organise the reconstruction of the American
factory;

the America seller opens a conversation with the Italian
factory to for supplies.

11/23

Outline Introduction A Self-Adaptive System Conclusion

Adaptation

Assume now that an accident (for instance a fire) seriously damage
the American factory. The business must go on and the Italian
factory must provide goods to the American seller too. The system
is adapted in the following way:

the American factory is (temporarily) excluded from the
business;

consequently the general manager discusses production
strategies only with the Italian factory;

in the meantime the general manager interacts with the
technical staff to organise the reconstruction of the American
factory;

the America seller opens a conversation with the Italian
factory to for supplies.

11/23

Outline Introduction A Self-Adaptive System Conclusion

Adaptation

Assume now that an accident (for instance a fire) seriously damage
the American factory. The business must go on and the Italian
factory must provide goods to the American seller too. The system
is adapted in the following way:

the American factory is (temporarily) excluded from the
business;

consequently the general manager discusses production
strategies only with the Italian factory;

in the meantime the general manager interacts with the
technical staff to organise the reconstruction of the American
factory;

the America seller opens a conversation with the Italian
factory to for supplies.

11/23

Outline Introduction A Self-Adaptive System Conclusion

Adaptation

Assume now that an accident (for instance a fire) seriously damage
the American factory. The business must go on and the Italian
factory must provide goods to the American seller too. The system
is adapted in the following way:

the American factory is (temporarily) excluded from the
business;

consequently the general manager discusses production
strategies only with the Italian factory;

in the meantime the general manager interacts with the
technical staff to organise the reconstruction of the American
factory;

the America seller opens a conversation with the Italian
factory to for supplies.

11/23

Outline Introduction A Self-Adaptive System Conclusion

Adaptation

Assume now that an accident (for instance a fire) seriously damage
the American factory. The business must go on and the Italian
factory must provide goods to the American seller too. The system
is adapted in the following way:

the American factory is (temporarily) excluded from the
business;

consequently the general manager discusses production
strategies only with the Italian factory;

in the meantime the general manager interacts with the
technical staff to organise the reconstruction of the American
factory;

the America seller opens a conversation with the Italian
factory to for supplies.

11/23

Outline Introduction A Self-Adaptive System Conclusion

System reconfiguration

Global Types G′ = G′1 | G2 | (G′3 | G4)

G′1 = µt.GM→ iF : gif (ProductionLines).iF→ GM : ifg(ProgressReport).t

G2 = µt.iS→ iF : sf (Item,Amount).iF→ iS : {yes(DeliveryDate).t,
no(ExpectedTime)t}

G′3 = µt.aS→ iF : sf -a(Item,Amount).iF→ aS : {yes-a(DeliveryDate).t,
no-a(ExpectedTime)t}

G4 = µt.GM→ TS : gt(ReconstructPlan).TS→ GM : tg(TechRevisions).t

12/23

Outline Introduction A Self-Adaptive System Conclusion

System reconfiguration

Global Types G′ = G′1 | G2 | (G′3 | G4)

G′1 = µt.GM→ iF : gif (ProductionLines).iF→ GM : ifg(ProgressReport).t

G2 = µt.iS→ iF : sf (Item,Amount).iF→ iS : {yes(DeliveryDate).t,
no(ExpectedTime)t}

G′3 = µt.aS→ iF : sf -a(Item,Amount).iF→ aS : {yes-a(DeliveryDate).t,
no-a(ExpectedTime)t}

G4 = µt.GM→ TS : gt(ReconstructPlan).TS→ GM : tg(TechRevisions).t

12/23

Outline Introduction A Self-Adaptive System Conclusion

System reconfiguration

Global Types G′ = G′1 | G2 | (G′3 | G4)

G′1 = µt.GM→ iF : gif (ProductionLines).iF→ GM : ifg(ProgressReport).t

G2 = µt.iS→ iF : sf (Item,Amount).iF→ iS : {yes(DeliveryDate).t,
no(ExpectedTime)t}

G′3 = µt.aS→ iF : sf -a(Item,Amount).iF→ aS : {yes-a(DeliveryDate).t,
no-a(ExpectedTime)t}

G4 = µt.GM→ TS : gt(ReconstructPlan).TS→ GM : tg(TechRevisions).t

12/23

Outline Introduction A Self-Adaptive System Conclusion

System reconfiguration

Global Types G′ = G′1 | G2 | (G′3 | G4)

G′1 = µt.GM→ iF : gif (ProductionLines).iF→ GM : ifg(ProgressReport).t

G2 = µt.iS→ iF : sf (Item,Amount).iF→ iS : {yes(DeliveryDate).t,
no(ExpectedTime)t}

G′3 = µt.aS→ iF : sf -a(Item,Amount).iF→ aS : {yes-a(DeliveryDate).t,
no-a(ExpectedTime)t}

G4 = µt.GM→ TS : gt(ReconstructPlan).TS→ GM : tg(TechRevisions).t

12/23

Outline Introduction A Self-Adaptive System Conclusion

System reconfiguration

Global Types G′ = G′1 | G2 | (G′3 | G4)

G′1 = µt.GM→ iF : gif (ProductionLines).iF→ GM : ifg(ProgressReport).t

G2 = µt.iS→ iF : sf (Item,Amount).iF→ iS : {yes(DeliveryDate).t,
no(ExpectedTime)t}

G′3 = µt.aS→ iF : sf -a(Item,Amount).iF→ aS : {yes-a(DeliveryDate).t,
no-a(ExpectedTime)t}

G4 = µt.GM→ TS : gt(ReconstructPlan).TS→ GM : tg(TechRevisions).t

12/23

Outline Introduction A Self-Adaptive System Conclusion

System reconfiguration

Global Types G′ = G′1 | G2 | (G′3 | G4)

G′1 = µt.GM→ iF : gif (ProductionLines).iF→ GM : ifg(ProgressReport).t

G2 = µt.iS→ iF : sf (Item,Amount).iF→ iS : {yes(DeliveryDate).t,
no(ExpectedTime)t}

G′3 = µt.aS→ iF : sf -a(Item,Amount).iF→ aS : {yes-a(DeliveryDate).t,
no-a(ExpectedTime)t}

G4 = µt.GM→ TS : gt(ReconstructPlan).TS→ GM : tg(TechRevisions).t
12/23

Outline Introduction A Self-Adaptive System Conclusion

New Monitors

µt.iF!sf (Item, Amount).iF?{yes(DeliveryDate).t,
no(Delay).t} from G2

µt.iS?sf (Item, Amount).iS!{yes(DeliveryDate).t,
no(Delay).t} |

µt.aS?sf -a(Item, Amount).aS!{yes-a(DeliveryDate).t,
no-a(Delay).t} | from G′1,G2

µt.GM?gif (ProductionLines).GM!ifg(ProgressReport).t and G′3

µt.iF!gif (ProductionLines).iF?ifg(ProgressReport).t |
µt.TS!gt(ReconstructionPlan).TS?tg(ProgressReport).t

µt.iF!sf -a(Item, Amount).iF?{yes-a(DeliveryDate).t,
no-a(Delay).t} from G′3

........

13/23

Outline Introduction A Self-Adaptive System Conclusion

New Monitors

µt.iF!sf (Item, Amount).iF?{yes(DeliveryDate).t,
no(Delay).t} from G2

µt.iS?sf (Item, Amount).iS!{yes(DeliveryDate).t,
no(Delay).t} |

µt.aS?sf -a(Item, Amount).aS!{yes-a(DeliveryDate).t,
no-a(Delay).t} | from G′1,G2

µt.GM?gif (ProductionLines).GM!ifg(ProgressReport).t and G′3

µt.iF!gif (ProductionLines).iF?ifg(ProgressReport).t |
µt.TS!gt(ReconstructionPlan).TS?tg(ProgressReport).t

µt.iF!sf -a(Item, Amount).iF?{yes-a(DeliveryDate).t,
no-a(Delay).t} from G′3

........

13/23

Outline Introduction A Self-Adaptive System Conclusion

New Monitors

µt.iF!sf (Item, Amount).iF?{yes(DeliveryDate).t,
no(Delay).t} from G2

µt.iS?sf (Item, Amount).iS!{yes(DeliveryDate).t,
no(Delay).t} |

µt.aS?sf -a(Item, Amount).aS!{yes-a(DeliveryDate).t,
no-a(Delay).t} | from G′1,G2

µt.GM?gif (ProductionLines).GM!ifg(ProgressReport).t and G′3

µt.iF!gif (ProductionLines).iF?ifg(ProgressReport).t |
µt.TS!gt(ReconstructionPlan).TS?tg(ProgressReport).t

µt.iF!sf -a(Item, Amount).iF?{yes-a(DeliveryDate).t,
no-a(Delay).t} from G′3

........

13/23

Outline Introduction A Self-Adaptive System Conclusion

New Monitors

µt.iF!sf (Item, Amount).iF?{yes(DeliveryDate).t,
no(Delay).t} from G2

µt.iS?sf (Item, Amount).iS!{yes(DeliveryDate).t,
no(Delay).t} |

µt.aS?sf -a(Item, Amount).aS!{yes-a(DeliveryDate).t,
no-a(Delay).t} | from G′1,G2

µt.GM?gif (ProductionLines).GM!ifg(ProgressReport).t and G′3

µt.iF!gif (ProductionLines).iF?ifg(ProgressReport).t |
µt.TS!gt(ReconstructionPlan).TS?tg(ProgressReport).t

µt.iF!sf -a(Item, Amount).iF?{yes-a(DeliveryDate).t,
no-a(Delay).t} from G′3

........

13/23

Outline Introduction A Self-Adaptive System Conclusion

New Monitors

µt.iF!sf (Item, Amount).iF?{yes(DeliveryDate).t,
no(Delay).t} from G2

µt.iS?sf (Item, Amount).iS!{yes(DeliveryDate).t,
no(Delay).t} |

µt.aS?sf -a(Item, Amount).aS!{yes-a(DeliveryDate).t,
no-a(Delay).t} | from G′1,G2

µt.GM?gif (ProductionLines).GM!ifg(ProgressReport).t and G′3

µt.iF!gif (ProductionLines).iF?ifg(ProgressReport).t |
µt.TS!gt(ReconstructionPlan).TS?tg(ProgressReport).t

µt.iF!sf -a(Item, Amount).iF?{yes-a(DeliveryDate).t,
no-a(Delay).t} from G′3

........

13/23

Outline Introduction A Self-Adaptive System Conclusion

New Processes

Processes are modified accordingly

µX .y !sf (item, amount).(y?yes(date).X + y?no(delay)).X

µX .y?sf (item, amount).if available(item) then y !yes(date).X
else y !no(delay).X |

µX .y?sf -a(item, amount).if available(item) then y !yes-a(date).X
else y !no-a(delay).X |

µX .y?gif (productionlines).y !(progressreport).X

µX .y !gif (productionlines).y?ifg(progressreport).X |
µX .y !gt(ReconstructionPlan).y?tg(Report).X

µX .y !sf -a(item, amount).(y?yes-a(date).X + y?no-a(delay)).X

........

14/23

Outline Introduction A Self-Adaptive System Conclusion

New Processes

Processes are modified accordingly

µX .y !sf (item, amount).(y?yes(date).X + y?no(delay)).X

µX .y?sf (item, amount).if available(item) then y !yes(date).X
else y !no(delay).X |

µX .y?sf -a(item, amount).if available(item) then y !yes-a(date).X
else y !no-a(delay).X |

µX .y?gif (productionlines).y !(progressreport).X

µX .y !gif (productionlines).y?ifg(progressreport).X |
µX .y !gt(ReconstructionPlan).y?tg(Report).X

µX .y !sf -a(item, amount).(y?yes-a(date).X + y?no-a(delay)).X

........

14/23

Outline Introduction A Self-Adaptive System Conclusion

New Processes

Processes are modified accordingly

µX .y !sf (item, amount).(y?yes(date).X + y?no(delay)).X

µX .y?sf (item, amount).if available(item) then y !yes(date).X
else y !no(delay).X |

µX .y?sf -a(item, amount).if available(item) then y !yes-a(date).X
else y !no-a(delay).X |

µX .y?gif (productionlines).y !(progressreport).X

µX .y !gif (productionlines).y?ifg(progressreport).X |
µX .y !gt(ReconstructionPlan).y?tg(Report).X

µX .y !sf -a(item, amount).(y?yes-a(date).X + y?no-a(delay)).X

........

14/23

Outline Introduction A Self-Adaptive System Conclusion

New Processes

Processes are modified accordingly

µX .y !sf (item, amount).(y?yes(date).X + y?no(delay)).X

µX .y?sf (item, amount).if available(item) then y !yes(date).X
else y !no(delay).X |

µX .y?sf -a(item, amount).if available(item) then y !yes-a(date).X
else y !no-a(delay).X |

µX .y?gif (productionlines).y !(progressreport).X

µX .y !gif (productionlines).y?ifg(progressreport).X |
µX .y !gt(ReconstructionPlan).y?tg(Report).X

µX .y !sf -a(item, amount).(y?yes-a(date).X + y?no-a(delay)).X

........

14/23

Outline Introduction A Self-Adaptive System Conclusion

Syntax

Single threaded G ::= p→ q : {`i (qi).Gi}i∈I || µt.G || t || end
Global types

Global Types G ::= G || G | G

Single threaded M ::= p?{`i (Si).Mi}i∈I || q!{`i (Si).Mi}i∈I || µt.M || t || end
Monitors

Monitors M ::= M || M | M

Single threaded P ::= c?`(x).P || c!`(e).P || P + P ||
Processes if e then P else P || op.P || µX .P || X || 0.

Processes P ::= P || P | P

Networks N ::= new(G) || M[P] || N || N || (νs)N

Systems S ::= N G σ

15/23

Outline Introduction A Self-Adaptive System Conclusion

Syntax

Single threaded G ::= p→ q : {`i (qi).Gi}i∈I || µt.G || t || end
Global types

Global Types G ::= G || G | G

Single threaded M ::= p?{`i (Si).Mi}i∈I || q!{`i (Si).Mi}i∈I || µt.M || t || end
Monitors

Monitors M ::= M || M | M

Single threaded P ::= c?`(x).P || c!`(e).P || P + P ||
Processes if e then P else P || op.P || µX .P || X || 0.

Processes P ::= P || P | P

Networks N ::= new(G) || M[P] || N || N || (νs)N

Systems S ::= N G σ

15/23

Outline Introduction A Self-Adaptive System Conclusion

Syntax

Single threaded G ::= p→ q : {`i (qi).Gi}i∈I || µt.G || t || end
Global types

Global Types G ::= G || G | G

Single threaded M ::= p?{`i (Si).Mi}i∈I || q!{`i (Si).Mi}i∈I || µt.M || t || end
Monitors

Monitors M ::= M || M | M

Single threaded P ::= c?`(x).P || c!`(e).P || P + P ||
Processes if e then P else P || op.P || µX .P || X || 0.

Processes P ::= P || P | P

Networks N ::= new(G) || M[P] || N || N || (νs)N

Systems S ::= N G σ

15/23

Outline Introduction A Self-Adaptive System Conclusion

Syntax

Single threaded G ::= p→ q : {`i (qi).Gi}i∈I || µt.G || t || end
Global types

Global Types G ::= G || G | G

Single threaded M ::= p?{`i (Si).Mi}i∈I || q!{`i (Si).Mi}i∈I || µt.M || t || end
Monitors

Monitors M ::= M || M | M

Single threaded P ::= c?`(x).P || c!`(e).P || P + P ||
Processes if e then P else P || op.P || µX .P || X || 0.

Processes P ::= P || P | P

Networks N ::= new(G) || M[P] || N || N || (νs)N

Systems S ::= N G σ

15/23

Outline Introduction A Self-Adaptive System Conclusion

Syntax

Single threaded G ::= p→ q : {`i (qi).Gi}i∈I || µt.G || t || end
Global types

Global Types G ::= G || G | G

Single threaded M ::= p?{`i (Si).Mi}i∈I || q!{`i (Si).Mi}i∈I || µt.M || t || end
Monitors

Monitors M ::= M || M | M

Single threaded P ::= c?`(x).P || c!`(e).P || P + P ||
Processes if e then P else P || op.P || µX .P || X || 0.

Processes P ::= P || P | P

Networks N ::= new(G) || M[P] || N || N || (νs)N

Systems S ::= N G σ

15/23

Outline Introduction A Self-Adaptive System Conclusion

Process Types

Single threaded T ::=
∧

i∈I ?`i (Si).Ti ||
∨

i∈I !`i (Si).Ti || µt.T || t || end
Types

Types T ::= T || T | T

Γ, x : S ` P � c : T
rcv

Γ ` c?`(x).P � c :?`(S).T

Γ ` P � c : T Γ ` e : S
send

Γ ` c!`(e).P � c :!`(S).T

Γ ` P1 � c : T1 Γ ` P2 � c : T2 T1 ∧ T2 ∈ T
choice

Γ ` P1 + P2 � c : T1 ∧ T2

Γ ` e : Bool Γ ` P1 � c : T1 Γ ` P2 � c : T2 T1 ∨ T2 ∈ T
if

Γ ` if e then P1 else P2 � c : T1 ∨ T2

Γ ` P1 � c : T1 Γ ` P2 � c : T2
par

Γ ` P1 | P2 � c : T1 | T2

16/23

Outline Introduction A Self-Adaptive System Conclusion

Process Types

Single threaded T ::=
∧

i∈I ?`i (Si).Ti ||
∨

i∈I !`i (Si).Ti || µt.T || t || end
Types

Types T ::= T || T | T

Γ, x : S ` P � c : T
rcv

Γ ` c?`(x).P � c :?`(S).T

Γ ` P � c : T Γ ` e : S
send

Γ ` c!`(e).P � c :!`(S).T

Γ ` P1 � c : T1 Γ ` P2 � c : T2 T1 ∧ T2 ∈ T
choice

Γ ` P1 + P2 � c : T1 ∧ T2

Γ ` e : Bool Γ ` P1 � c : T1 Γ ` P2 � c : T2 T1 ∨ T2 ∈ T
if

Γ ` if e then P1 else P2 � c : T1 ∨ T2

Γ ` P1 � c : T1 Γ ` P2 � c : T2
par

Γ ` P1 | P2 � c : T1 | T2

16/23

Outline Introduction A Self-Adaptive System Conclusion

Process Types

Single threaded T ::=
∧

i∈I ?`i (Si).Ti ||
∨

i∈I !`i (Si).Ti || µt.T || t || end
Types

Types T ::= T || T | T

Γ, x : S ` P � c : T
rcv

Γ ` c?`(x).P � c :?`(S).T

Γ ` P � c : T Γ ` e : S
send

Γ ` c!`(e).P � c :!`(S).T

Γ ` P1 � c : T1 Γ ` P2 � c : T2 T1 ∧ T2 ∈ T
choice

Γ ` P1 + P2 � c : T1 ∧ T2

Γ ` e : Bool Γ ` P1 � c : T1 Γ ` P2 � c : T2 T1 ∨ T2 ∈ T
if

Γ ` if e then P1 else P2 � c : T1 ∨ T2

Γ ` P1 � c : T1 Γ ` P2 � c : T2
par

Γ ` P1 | P2 � c : T1 | T2

16/23

Outline Introduction A Self-Adaptive System Conclusion

Process Types

Single threaded T ::=
∧

i∈I ?`i (Si).Ti ||
∨

i∈I !`i (Si).Ti || µt.T || t || end
Types

Types T ::= T || T | T

Γ, x : S ` P � c : T
rcv

Γ ` c?`(x).P � c :?`(S).T

Γ ` P � c : T Γ ` e : S
send

Γ ` c!`(e).P � c :!`(S).T

Γ ` P1 � c : T1 Γ ` P2 � c : T2 T1 ∧ T2 ∈ T
choice

Γ ` P1 + P2 � c : T1 ∧ T2

Γ ` e : Bool Γ ` P1 � c : T1 Γ ` P2 � c : T2 T1 ∨ T2 ∈ T
if

Γ ` if e then P1 else P2 � c : T1 ∨ T2

Γ ` P1 � c : T1 Γ ` P2 � c : T2
par

Γ ` P1 | P2 � c : T1 | T2

16/23

Outline Introduction A Self-Adaptive System Conclusion

Process Types

Single threaded T ::=
∧

i∈I ?`i (Si).Ti ||
∨

i∈I !`i (Si).Ti || µt.T || t || end
Types

Types T ::= T || T | T

Γ, x : S ` P � c : T
rcv

Γ ` c?`(x).P � c :?`(S).T

Γ ` P � c : T Γ ` e : S
send

Γ ` c!`(e).P � c :!`(S).T

Γ ` P1 � c : T1 Γ ` P2 � c : T2 T1 ∧ T2 ∈ T
choice

Γ ` P1 + P2 � c : T1 ∧ T2

Γ ` e : Bool Γ ` P1 � c : T1 Γ ` P2 � c : T2 T1 ∨ T2 ∈ T
if

Γ ` if e then P1 else P2 � c : T1 ∨ T2

Γ ` P1 � c : T1 Γ ` P2 � c : T2
par

Γ ` P1 | P2 � c : T1 | T2

16/23

Outline Introduction A Self-Adaptive System Conclusion

Adequacy of Types for Monitors

∀i ∈ I : Ti ≤ T′i
[sub-in]∧

i∈I∪J

p?`i (Si).Ti ≤
∧
i∈I

p?`i (Si).T
′
i

∀i ∈ I : Ti ≤ T′i
[sub-out]∨

i∈I

p!`i (Si).Ti ≤
∨

i∈I∪J

p!`i (Si).T
′
i

P ∝ M (P is adequate for M) if ` P � c : T and T ≤ |M|
P1 ∝M1 and P2 ∝M2 imply P1 | P2 ∝M1 | M2.

|p?{`i (Si).Mi}i∈I | =
∧

i∈I ?`i (Si).|Mi |
|q!{`i (Si).Mi}i∈I | =

∨
i∈I !`i (Si).|Mi |

|µt.M| = µt.|M| |t| = t |end| = end

17/23

Outline Introduction A Self-Adaptive System Conclusion

Adequacy of Types for Monitors

∀i ∈ I : Ti ≤ T′i
[sub-in]∧

i∈I∪J

p?`i (Si).Ti ≤
∧
i∈I

p?`i (Si).T
′
i

∀i ∈ I : Ti ≤ T′i
[sub-out]∨

i∈I

p!`i (Si).Ti ≤
∨

i∈I∪J

p!`i (Si).T
′
i

P ∝ M (P is adequate for M) if ` P � c : T and T ≤ |M|
P1 ∝M1 and P2 ∝M2 imply P1 | P2 ∝M1 | M2.

|p?{`i (Si).Mi}i∈I | =
∧

i∈I ?`i (Si).|Mi |
|q!{`i (Si).Mi}i∈I | =

∨
i∈I !`i (Si).|Mi |

|µt.M| = µt.|M| |t| = t |end| = end

17/23

Outline Introduction A Self-Adaptive System Conclusion

Adequacy of Types for Monitors

∀i ∈ I : Ti ≤ T′i
[sub-in]∧

i∈I∪J

p?`i (Si).Ti ≤
∧
i∈I

p?`i (Si).T
′
i

∀i ∈ I : Ti ≤ T′i
[sub-out]∨

i∈I

p!`i (Si).Ti ≤
∨

i∈I∪J

p!`i (Si).T
′
i

P ∝ M (P is adequate for M) if ` P � c : T and T ≤ |M|
P1 ∝M1 and P2 ∝M2 imply P1 | P2 ∝M1 | M2.

|p?{`i (Si).Mi}i∈I | =
∧

i∈I ?`i (Si).|Mi |
|q!{`i (Si).Mi}i∈I | =

∨
i∈I !`i (Si).|Mi |

|µt.M| = µt.|M| |t| = t |end| = end

17/23

Outline Introduction A Self-Adaptive System Conclusion

Adequacy of Types for Monitors

∀i ∈ I : Ti ≤ T′i
[sub-in]∧

i∈I∪J

p?`i (Si).Ti ≤
∧
i∈I

p?`i (Si).T
′
i

∀i ∈ I : Ti ≤ T′i
[sub-out]∨

i∈I

p!`i (Si).Ti ≤
∨

i∈I∪J

p!`i (Si).T
′
i

P ∝ M (P is adequate for M) if ` P � c : T and T ≤ |M|
P1 ∝M1 and P2 ∝M2 imply P1 | P2 ∝M1 | M2.

|p?{`i (Si).Mi}i∈I | =
∧

i∈I ?`i (Si).|Mi |
|q!{`i (Si).Mi}i∈I | =

∨
i∈I !`i (Si).|Mi |

|µt.M| = µt.|M| |t| = t |end| = end

17/23

Outline Introduction A Self-Adaptive System Conclusion

Adequacy of Types for Monitors

∀i ∈ I : Ti ≤ T′i
[sub-in]∧

i∈I∪J

p?`i (Si).Ti ≤
∧
i∈I

p?`i (Si).T
′
i

∀i ∈ I : Ti ≤ T′i
[sub-out]∨

i∈I

p!`i (Si).Ti ≤
∨

i∈I∪J

p!`i (Si).T
′
i

P ∝ M (P is adequate for M) if ` P � c : T and T ≤ |M|
P1 ∝M1 and P2 ∝M2 imply P1 | P2 ∝M1 | M2.

|p?{`i (Si).Mi}i∈I | =
∧

i∈I ?`i (Si).|Mi |
|q!{`i (Si).Mi}i∈I | =

∨
i∈I !`i (Si).|Mi |

|µt.M| = µt.|M| |t| = t |end| = end

17/23

Outline Introduction A Self-Adaptive System Conclusion

Operational Semantics

LTS for monitors

p?{`i (Si).Mi}i∈I

p?`j−−→ Mj j ∈ I q!{`i (Si).Mi}i∈I

q!`j−−→ Mj j ∈ I

M
α−→ M′

M | M′′ α−→ M′ | M′′

LTS for processes

op.P
op−→ P s[p]?`(x).P

s[p]?`(v)−−−−−→ P{v/x} s[p]!`(e).P
s[p]!`(v)−−−−→ P e ↓ v

P
β−→ P ′

P + Q
β−→ P ′

P
γ−→ P ′

P + Q
γ−→ P ′ + Q

P
δ−→ P′

P | P′′ δ−→ P′ | P′′

18/23

Outline Introduction A Self-Adaptive System Conclusion

Operational Semantics

LTS for monitors

p?{`i (Si).Mi}i∈I

p?`j−−→ Mj j ∈ I q!{`i (Si).Mi}i∈I

q!`j−−→ Mj j ∈ I

M
α−→ M′

M | M′′ α−→ M′ | M′′

LTS for processes

op.P
op−→ P s[p]?`(x).P

s[p]?`(v)−−−−−→ P{v/x} s[p]!`(e).P
s[p]!`(v)−−−−→ P e ↓ v

P
β−→ P ′

P + Q
β−→ P ′

P
γ−→ P ′

P + Q
γ−→ P ′ + Q

P
δ−→ P′

P | P′′ δ−→ P′ | P′′

18/23

Outline Introduction A Self-Adaptive System Conclusion

System reduction and adaptation

Monitored processes and system reduction

M1
q?`−−→M′

1 P1
s[p]?`(v)−−−−−→ P′

1 M2
p!`−→M′

2 P2
s[q]!`(v)−−−−→ P′

2

Com
M1[P1] || M2[P2] −→M′

1[P
′
1] || M′

2[P
′
2]

P
op−→ P′

OP
M[P] G σ −→M[P′] G op(σ)

Rule ADAPT

F (σ) = (G,K, σ′) ∀p ∈ pa(G) \ H.Qp ∈ P & Qp ∝ Ĝ�p
M

′
p = mon(p,Mp, Ĝ,K) P

′
p = proc(s[p],Pp,Mp, Ĝ,K)

(ν s) (
∏
p∈H

Mp[Pp]) G σ −→ (ν s) (
∏

p∈H\K

M
′
p[P

′
p]) ||

∏
p∈pa(G)\H

Ĝ�p [Qp{s[p]/y}]) G σ′

19/23

Outline Introduction A Self-Adaptive System Conclusion

System reduction and adaptation

Monitored processes and system reduction

M1
q?`−−→M′

1 P1
s[p]?`(v)−−−−−→ P′

1 M2
p!`−→M′

2 P2
s[q]!`(v)−−−−→ P′

2

Com
M1[P1] || M2[P2] −→M′

1[P
′
1] || M′

2[P
′
2]

P
op−→ P′

OP
M[P] G σ −→M[P′] G op(σ)

Rule ADAPT

F (σ) = (G,K, σ′) ∀p ∈ pa(G) \ H.Qp ∈ P & Qp ∝ Ĝ�p
M

′
p = mon(p,Mp, Ĝ,K) P

′
p = proc(s[p],Pp,Mp, Ĝ,K)

(ν s) (
∏
p∈H

Mp[Pp]) G σ −→ (ν s) (
∏

p∈H\K

M
′
p[P

′
p]) ||

∏
p∈pa(G)\H

Ĝ�p [Qp{s[p]/y}]) G σ′

19/23

Outline Introduction A Self-Adaptive System Conclusion

Properties

System initiator:

Mp = G�p ∀p ∈ pa(G). Pp ∈ P & Pp ∝ Mp
InitS

new(G) −→ (ν s) (
∏

p∈pa(G)

Mp[Pp{s[p]/y}])

A system is whose network is a parallel composition session initiators is a
initial

If P is complete, S is an initial system and S −→∗P S ′, then:

1 all monitored processes in S ′ satisfy the adequacy condition;

2 S ′ has progress.(i.e. every input monitored process will eventually
be reduced with a dual output monitored process and vice-versa).

20/23

Outline Introduction A Self-Adaptive System Conclusion

Properties

System initiator:

Mp = G�p ∀p ∈ pa(G). Pp ∈ P & Pp ∝ Mp
InitS

new(G) −→ (ν s) (
∏

p∈pa(G)

Mp[Pp{s[p]/y}])

A system is whose network is a parallel composition session initiators is a
initial

If P is complete, S is an initial system and S −→∗P S ′, then:

1 all monitored processes in S ′ satisfy the adequacy condition;

2 S ′ has progress.(i.e. every input monitored process will eventually
be reduced with a dual output monitored process and vice-versa).

20/23

Outline Introduction A Self-Adaptive System Conclusion

Properties

System initiator:

Mp = G�p ∀p ∈ pa(G). Pp ∈ P & Pp ∝ Mp
InitS

new(G) −→ (ν s) (
∏

p∈pa(G)

Mp[Pp{s[p]/y}])

A system is whose network is a parallel composition session initiators is a
initial

If P is complete, S is an initial system and S −→∗P S ′, then:

1 all monitored processes in S ′ satisfy the adequacy condition;

2 S ′ has progress.(i.e. every input monitored process will eventually
be reduced with a dual output monitored process and vice-versa).

20/23

Outline Introduction A Self-Adaptive System Conclusion

Properties

System initiator:

Mp = G�p ∀p ∈ pa(G). Pp ∈ P & Pp ∝ Mp
InitS

new(G) −→ (ν s) (
∏

p∈pa(G)

Mp[Pp{s[p]/y}])

A system is whose network is a parallel composition session initiators is a
initial

If P is complete, S is an initial system and S −→∗P S ′, then:

1 all monitored processes in S ′ satisfy the adequacy condition;

2 S ′ has progress.(i.e. every input monitored process will eventually
be reduced with a dual output monitored process and vice-versa).

20/23

Outline Introduction A Self-Adaptive System Conclusion

Summary

Focus: self-adaptiveness in the context of multiparty sessions

21/23

Outline Introduction A Self-Adaptive System Conclusion

Summary

Focus: self-adaptiveness in the context of multiparty sessions

Main ingredients:

global types representing the overall communication choreography

monitors adapting the behaviour of processes to the prescriptions of
global types

a global state implementing the control data

21/23

Outline Introduction A Self-Adaptive System Conclusion

Summary

Focus: self-adaptiveness in the context of multiparty sessions

Main ingredients:

global types representing the overall communication choreography

monitors adapting the behaviour of processes to the prescriptions of
global types

a global state implementing the control data

21/23

Outline Introduction A Self-Adaptive System Conclusion

Summary

Focus: self-adaptiveness in the context of multiparty sessions

Main ingredients:

global types representing the overall communication choreography

monitors adapting the behaviour of processes to the prescriptions of
global types

a global state implementing the control data

21/23

Outline Introduction A Self-Adaptive System Conclusion

Summary

Focus: self-adaptiveness in the context of multiparty sessions

Main ingredients:

global types representing the overall communication choreography

monitors adapting the behaviour of processes to the prescriptions of
global types

a global state implementing the control data

21/23

Outline Introduction A Self-Adaptive System Conclusion

Summary

Focus: self-adaptiveness in the context of multiparty sessions

Main features:

21/23

Outline Introduction A Self-Adaptive System Conclusion

Summary

Focus: self-adaptiveness in the context of multiparty sessions

Main features:

parallel composition of global types and monitors allows flexibility in
adaptation

21/23

Outline Introduction A Self-Adaptive System Conclusion

Summary

Focus: self-adaptiveness in the context of multiparty sessions

Main features:

parallel composition of global types and monitors allows flexibility in
adaptation

the choreography is updated at runtime, in response to changing
conditions in the global state

21/23

Outline Introduction A Self-Adaptive System Conclusion

Summary

Focus: self-adaptiveness in the context of multiparty sessions

Main features:

parallel composition of global types and monitors allows flexibility in
adaptation

the choreography is updated at runtime, in response to changing
conditions in the global state

an adaptation function control the reconfiguration of the system

21/23

Outline Introduction A Self-Adaptive System Conclusion

Summary

Focus: self-adaptiveness in the context of multiparty sessions

Main features:

parallel composition of global types and monitors allows flexibility in
adaptation

the choreography is updated at runtime, in response to changing
conditions in the global state

an adaptation function control the reconfiguration of the system

the dynamic system reconfiguration can add new participants,
eliminate participants and modify the communications by erasing
those involving participants no more active

21/23

Outline Introduction A Self-Adaptive System Conclusion

Summary

Focus: self-adaptiveness in the context of multiparty sessions

Main features:

parallel composition of global types and monitors allows flexibility in
adaptation

the choreography is updated at runtime, in response to changing
conditions in the global state

an adaptation function control the reconfiguration of the system

the dynamic system reconfiguration can add new participants,
eliminate participants and modify the communications by erasing
those involving participants no more active

processes, that are simply implementation code, can follow different
incompatible computational paths

21/23

Outline Introduction A Self-Adaptive System Conclusion

Related Papers

T.-C. Chen, L. Bocchi, P.-M. Deniélou, K. Honda, and N. Yoshida,
“Asynchronous Distributed Monitoring for Multiparty Session
Enforcement”: the monitors prescribe not only the types of the
exchanged data, but also that the values of these data satisfy some
predicates

G. Anderson and J. Rathke, “Dynamic Software Update for Message
Passing Programs”: global and session types are used to guarantee
deadlock-freedom in a calculus of multiparty sessions with
asynchronous communications

M. dalla Preda, I. Lanese, J. Mauro, M. Gabbrielli, and
S. Giallorenzo, “Safe Run-time Adaptation of Distributed Systems”:
proposes a rule-based approach in which all interactions, under all
possible changes produced by the adaptation rules, proceed as
prescribed by an abstract model

22/23

Outline Introduction A Self-Adaptive System Conclusion

Related Papers

T.-C. Chen, L. Bocchi, P.-M. Deniélou, K. Honda, and N. Yoshida,
“Asynchronous Distributed Monitoring for Multiparty Session
Enforcement”: the monitors prescribe not only the types of the
exchanged data, but also that the values of these data satisfy some
predicates

G. Anderson and J. Rathke, “Dynamic Software Update for Message
Passing Programs”: global and session types are used to guarantee
deadlock-freedom in a calculus of multiparty sessions with
asynchronous communications

M. dalla Preda, I. Lanese, J. Mauro, M. Gabbrielli, and
S. Giallorenzo, “Safe Run-time Adaptation of Distributed Systems”:
proposes a rule-based approach in which all interactions, under all
possible changes produced by the adaptation rules, proceed as
prescribed by an abstract model

22/23

Outline Introduction A Self-Adaptive System Conclusion

Related Papers

T.-C. Chen, L. Bocchi, P.-M. Deniélou, K. Honda, and N. Yoshida,
“Asynchronous Distributed Monitoring for Multiparty Session
Enforcement”: the monitors prescribe not only the types of the
exchanged data, but also that the values of these data satisfy some
predicates

G. Anderson and J. Rathke, “Dynamic Software Update for Message
Passing Programs”: global and session types are used to guarantee
deadlock-freedom in a calculus of multiparty sessions with
asynchronous communications

M. dalla Preda, I. Lanese, J. Mauro, M. Gabbrielli, and
S. Giallorenzo, “Safe Run-time Adaptation of Distributed Systems”:
proposes a rule-based approach in which all interactions, under all
possible changes produced by the adaptation rules, proceed as
prescribed by an abstract model

22/23

Outline Introduction A Self-Adaptive System Conclusion

Future Work

introduce local states and/or local communications to synchronize
processes in the scope of a single participant;

allow the global state to contain dynamically evolving semantic
information about processes, such as reputation or performance
rates

exploit a consensus algorithm for choosing a single one among all
the processes matching a monitor, using rates of processes

23/23

Outline Introduction A Self-Adaptive System Conclusion

Future Work

introduce local states and/or local communications to synchronize
processes in the scope of a single participant;

allow the global state to contain dynamically evolving semantic
information about processes, such as reputation or performance
rates

exploit a consensus algorithm for choosing a single one among all
the processes matching a monitor, using rates of processes

23/23

Outline Introduction A Self-Adaptive System Conclusion

Future Work

introduce local states and/or local communications to synchronize
processes in the scope of a single participant;

allow the global state to contain dynamically evolving semantic
information about processes, such as reputation or performance
rates

exploit a consensus algorithm for choosing a single one among all
the processes matching a monitor, using rates of processes

23/23

	Introduction
	A Self-Adaptive System
	Conclusion

