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Adaptation

What is adaptation?

R. Bruni, A. Corradini, F. Gadducci, A. Lluch-Lafuente, and
A. Vandin, “A Conceptual Framework for Adaptation,” in

FASE’12, ser. LNCS, vol. 7212. Springer, 2012, pp. 240–254.

“we define adaptation as the run-time modification of the control
data ...and a component is self-adaptive if it is able to modify its

own control data at run-time”

we need to distinguish between standard data and control data: a
change in the system behaviour is part of the application logic if it

is based on standard data, it is an adaptation if it is based on
control data.
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Introductory Example

Let’s consider a company in which factories interact with the
general manager about production policies. Moreover, the
sellers can communicate each other for requiring some
products.

The company initially consists of:

a general manager GM :

an Italian factory iF :

an American factory aF :

an Italian seller iS :

an American Seller aS :
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System overview

a system represent a conversation between a number of
distributed participants that can access a global state;

the overall structure of the system is given by a (parallel
composition of) global types;

Single participants are formed by an association of a monitor
and a process ;

monitors are obtained as projection of the Global Types and
give the structure of the communications between
participants;

processes represent the executable code of each participant
and can test or modify the global state;

monitors control processes allowing only the action compatible
with the actual communication structure;

processes allow the use of an external choice operator and can
be compatible with different monitors.
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Global types

Global Type: G = G1 | G2 | G3

G1 = µt.GM→ iF : gif (ProductionLines).GM→ aF : gaf (ProductionLines).
iF→ GM : ifg(ProgressReport).aF→ GM : afg(ProgressReport).t

G2 = µt.iS→ iF : sf (Item,Amount).iF→ iS : {yes(DeliveryDate).t,
no(ExpectedTime)t}

G3 = µt.aS→ aF : sf (Item,Amount).aF→ aS : {yes(DeliveryDate).t,
no(ExpectedTime)t}
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Monitors

Monitors are obtained as projection of global types

µt.iF!sf (Item, Amount).iF?{yes(DeliveryDate).t,
no(Delay).t} from G2

µt.iS?sf (Item, Amount).iS!{yes(DeliveryDate).t,
no(Delay).t} |

µt.GM?gif (ProductionLines).GM!(ProgressReport).t from G1,G2

µt.iF!gif (ProductionLines).aF!gaf (ProductionLines).
iF?ifg(ProgressReport).aF?afg(ProgressReport).t from G1

......

......
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Processes

Processes represent the runtime code implementing participants

µX .y !sf (item, amount).(y?yes(date).X + y?no(delay)).X

µX .y?sf (item, amount).if available(item) then y !yes(date).X
else y !no(delay).X |

µX .y?gif (productionlines).y !(progressreport).X

µX .y !gif (productionlines).y !ifg(productionlines).
y?ifg(progressreport).y?afg(progressreport).X

......

......
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Monitored processes

Participants are represented by monitored processes, which are
processes controlled by monitors.

µt.iF!sf (Item, Amount).iF?{fs(DeliveryDate).t, no(Delay).t}
[ µX .y !sf (item, amount).(y?yes(date).X + y?no(delay)).X ]

µt.iS?sf (Item, Amount).iS!{yes(DeliveryDate).t, no(Delay).t} |
µt.GM?gif (ProductionLines).GM!(ProgressReport).t

[ µX .y?sf (item, amount).if available(item) then y !yes(date).X
else y !no(delay).X |

[µX .y?gif (productionlines).y !ifg(progressreport).X ]

.......................................
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System

A System is a parallel composition of monitored processes and a
global state:

|| || .......... G σ

Operational semantics:

operational semantics is defined via a LTS with a special rule
for adaptation;

standard reduction steps of the system are allowed until an
adaptation function (defined on the global state) trigger the
adaptation step;

the parameter of the adaptation step are:

a set of participants to be removed;
a global type describing the adapted part of the system.
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Adaptation

Assume now that an accident (for instance a fire) seriously damage
the American factory. The business must go on and the Italian
factory must provide goods to the American seller too. The system
is adapted in the following way:

the American factory is (temporarily) excluded from the
business;

consequently the general manager discusses production
strategies only with the Italian factory;

in the meantime the general manager interacts with the
technical staff to organise the reconstruction of the American
factory;

the America seller opens a conversation with the Italian
factory to for supplies.
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System reconfiguration

Global Types G′ = G′1 | G2 | (G′3 | G4)

G′1 = µt.GM→ iF : gif (ProductionLines).iF→ GM : ifg(ProgressReport).t

G2 = µt.iS→ iF : sf (Item,Amount).iF→ iS : {yes(DeliveryDate).t,
no(ExpectedTime)t}

G′3 = µt.aS→ iF : sf -a(Item,Amount).iF→ aS : {yes-a(DeliveryDate).t,
no-a(ExpectedTime)t}

G4 = µt.GM→ TS : gt(ReconstructPlan).TS→ GM : tg(TechRevisions).t
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New Monitors

µt.iF!sf (Item, Amount).iF?{yes(DeliveryDate).t,
no(Delay).t} from G2

µt.iS?sf (Item, Amount).iS!{yes(DeliveryDate).t,
no(Delay).t} |

µt.aS?sf -a(Item, Amount).aS!{yes-a(DeliveryDate).t,
no-a(Delay).t} | from G′1,G2

µt.GM?gif (ProductionLines).GM!ifg(ProgressReport).t and G′3

µt.iF!gif (ProductionLines).iF?ifg(ProgressReport).t |
µt.TS!gt(ReconstructionPlan).TS?tg(ProgressReport).t

µt.iF!sf -a(Item, Amount).iF?{yes-a(DeliveryDate).t,
no-a(Delay).t} from G′3

........
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New Processes

Processes are modified accordingly
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Outline Introduction A Self-Adaptive System Conclusion

Syntax

Single threaded G ::= p→ q : {`i (qi ).Gi}i∈I || µt.G || t || end
Global types

Global Types G ::= G || G | G

Single threaded M ::= p?{`i (Si ).Mi}i∈I || q!{`i (Si ).Mi}i∈I || µt.M || t || end
Monitors

Monitors M ::= M || M | M

Single threaded P ::= c?`(x).P || c!`(e).P || P + P ||
Processes if e then P else P || op.P || µX .P || X || 0.

Processes P ::= P || P | P

Networks N ::= new(G) || M[P] || N || N || (νs)N

Systems S ::= N G σ
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Process Types

Single threaded T ::=
∧

i∈I ?`i (Si ).Ti ||
∨

i∈I !`i (Si ).Ti || µt.T || t || end
Types

Types T ::= T || T | T

Γ, x : S ` P � c : T
rcv

Γ ` c?`(x).P � c :?`(S).T

Γ ` P � c : T Γ ` e : S
send

Γ ` c!`(e).P � c :!`(S).T

Γ ` P1 � c : T1 Γ ` P2 � c : T2 T1 ∧ T2 ∈ T
choice

Γ ` P1 + P2 � c : T1 ∧ T2

Γ ` e : Bool Γ ` P1 � c : T1 Γ ` P2 � c : T2 T1 ∨ T2 ∈ T
if

Γ ` if e then P1 else P2 � c : T1 ∨ T2

Γ ` P1 � c : T1 Γ ` P2 � c : T2
par

Γ ` P1 | P2 � c : T1 | T2
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Adequacy of Types for Monitors

∀i ∈ I : Ti ≤ T′i
[sub-in]∧

i∈I∪J

p?`i (Si ).Ti ≤
∧
i∈I

p?`i (Si ).T
′
i

∀i ∈ I : Ti ≤ T′i
[sub-out]∨

i∈I

p!`i (Si ).Ti ≤
∨

i∈I∪J

p!`i (Si ).T
′
i

P ∝ M ( P is adequate for M) if ` P � c : T and T ≤ |M|
P1 ∝M1 and P2 ∝M2 imply P1 | P2 ∝M1 | M2.

|p?{`i (Si ).Mi}i∈I | =
∧

i∈I ?`i (Si ).|Mi |
|q!{`i (Si ).Mi}i∈I | =

∨
i∈I !`i (Si ).|Mi |

|µt.M| = µt.|M| |t| = t |end| = end

17/23



Outline Introduction A Self-Adaptive System Conclusion

Adequacy of Types for Monitors

∀i ∈ I : Ti ≤ T′i
[sub-in]∧

i∈I∪J

p?`i (Si ).Ti ≤
∧
i∈I

p?`i (Si ).T
′
i

∀i ∈ I : Ti ≤ T′i
[sub-out]∨

i∈I

p!`i (Si ).Ti ≤
∨

i∈I∪J

p!`i (Si ).T
′
i

P ∝ M ( P is adequate for M) if ` P � c : T and T ≤ |M|
P1 ∝M1 and P2 ∝M2 imply P1 | P2 ∝M1 | M2.

|p?{`i (Si ).Mi}i∈I | =
∧

i∈I ?`i (Si ).|Mi |
|q!{`i (Si ).Mi}i∈I | =

∨
i∈I !`i (Si ).|Mi |

|µt.M| = µt.|M| |t| = t |end| = end

17/23



Outline Introduction A Self-Adaptive System Conclusion

Adequacy of Types for Monitors

∀i ∈ I : Ti ≤ T′i
[sub-in]∧

i∈I∪J

p?`i (Si ).Ti ≤
∧
i∈I

p?`i (Si ).T
′
i

∀i ∈ I : Ti ≤ T′i
[sub-out]∨

i∈I

p!`i (Si ).Ti ≤
∨

i∈I∪J

p!`i (Si ).T
′
i

P ∝ M ( P is adequate for M) if ` P � c : T and T ≤ |M|
P1 ∝M1 and P2 ∝M2 imply P1 | P2 ∝M1 | M2.

|p?{`i (Si ).Mi}i∈I | =
∧

i∈I ?`i (Si ).|Mi |
|q!{`i (Si ).Mi}i∈I | =

∨
i∈I !`i (Si ).|Mi |

|µt.M| = µt.|M| |t| = t |end| = end

17/23



Outline Introduction A Self-Adaptive System Conclusion

Adequacy of Types for Monitors

∀i ∈ I : Ti ≤ T′i
[sub-in]∧

i∈I∪J

p?`i (Si ).Ti ≤
∧
i∈I

p?`i (Si ).T
′
i

∀i ∈ I : Ti ≤ T′i
[sub-out]∨

i∈I

p!`i (Si ).Ti ≤
∨

i∈I∪J

p!`i (Si ).T
′
i

P ∝ M ( P is adequate for M) if ` P � c : T and T ≤ |M|
P1 ∝M1 and P2 ∝M2 imply P1 | P2 ∝M1 | M2.

|p?{`i (Si ).Mi}i∈I | =
∧

i∈I ?`i (Si ).|Mi |
|q!{`i (Si ).Mi}i∈I | =

∨
i∈I !`i (Si ).|Mi |

|µt.M| = µt.|M| |t| = t |end| = end

17/23



Outline Introduction A Self-Adaptive System Conclusion

Adequacy of Types for Monitors

∀i ∈ I : Ti ≤ T′i
[sub-in]∧

i∈I∪J

p?`i (Si ).Ti ≤
∧
i∈I

p?`i (Si ).T
′
i

∀i ∈ I : Ti ≤ T′i
[sub-out]∨

i∈I

p!`i (Si ).Ti ≤
∨

i∈I∪J

p!`i (Si ).T
′
i

P ∝ M ( P is adequate for M) if ` P � c : T and T ≤ |M|
P1 ∝M1 and P2 ∝M2 imply P1 | P2 ∝M1 | M2.

|p?{`i (Si ).Mi}i∈I | =
∧

i∈I ?`i (Si ).|Mi |
|q!{`i (Si ).Mi}i∈I | =

∨
i∈I !`i (Si ).|Mi |

|µt.M| = µt.|M| |t| = t |end| = end

17/23



Outline Introduction A Self-Adaptive System Conclusion

Operational Semantics

LTS for monitors

p?{`i (Si ).Mi}i∈I

p?`j−−→ Mj j ∈ I q!{`i (Si ).Mi}i∈I

q!`j−−→ Mj j ∈ I

M
α−→ M′

M | M′′ α−→ M′ | M′′

LTS for processes

op.P
op−→ P s[p]?`(x).P

s[p]?`(v)−−−−−→ P{v/x} s[p]!`(e).P
s[p]!`(v)−−−−→ P e ↓ v

P
β−→ P ′

P + Q
β−→ P ′

P
γ−→ P ′

P + Q
γ−→ P ′ + Q

P
δ−→ P′

P | P′′ δ−→ P′ | P′′
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System reduction and adaptation

Monitored processes and system reduction

M1
q?`−−→M′

1 P1
s[p]?`(v)−−−−−→ P′

1 M2
p!`−→M′

2 P2
s[q]!`(v)−−−−→ P′

2

Com
M1[P1] || M2[P2] −→M′

1[P
′
1] || M′

2[P
′
2]

P
op−→ P′

OP
M[P] G σ −→M[P′] G op(σ)

Rule ADAPT

F (σ) = (G,K, σ′) ∀p ∈ pa(G) \ H.Qp ∈ P & Qp ∝ Ĝ�p
M

′
p = mon(p,Mp, Ĝ,K) P

′
p = proc(s[p],Pp,Mp, Ĝ,K)

(ν s) (
∏
p∈H

Mp[Pp]) G σ −→ (ν s) (
∏

p∈H\K

M
′
p[P

′
p]) ||

∏
p∈pa(G)\H

Ĝ�p [Qp{s[p]/y}]) G σ′
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Properties

System initiator:

Mp = G�p ∀p ∈ pa(G). Pp ∈ P & Pp ∝ Mp
InitS

new(G) −→ (ν s) (
∏

p∈pa(G)

Mp[Pp{s[p]/y}])

A system is whose network is a parallel composition session initiators is a
initial

If P is complete, S is an initial system and S −→∗P S ′, then:

1 all monitored processes in S ′ satisfy the adequacy condition;

2 S ′ has progress.(i.e. every input monitored process will eventually
be reduced with a dual output monitored process and vice-versa).
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